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Abstract
This report presents detailed derivations of the
expressions for the steady-state disturbance velocity at s pro-
peller hlade due to pressure loading and thickness. A procedure
for separating lifting line velocities from the total is outlined,
and conclusions are drawn regerding the presence of camber and
incidence corrections for propellers with symmetrical blades and

chordwise load distributions.

i e i 5 A Sl Ko s A R ST B Y b kot S e AR e S 8 S e



e e v

L}

it

Nomenclature

Kernel function for bound vortices defined in (5.9)
blade camber function

meximum camber at a particular radius

vector distance defined in (5.2) and (6.2)
integrand of (6.8)

functions defined in (A.2) and (A.3)

helicoildal surface representing k'th blade

axisl and tengential induction factors defined in (A.5)

modified Bessel Function of the first kind
index identifying a perticular blade

number of blades

modified Bessel Function of the second kind
chord length of a blade section

norrel coordinete in (s, r, n) system

pitch of a helicoidal surface

e/n(p)

r/A(p)

radial coordinate in (x,r,8) and (s,n,r) systems

radius of hub

unit vector in radial direction
propeller radius

streamwise coordinate in (s, n, r) system
dunmy streamwise coordinste

s coordinates of leading and trailing edge
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unit vector in s direction

source kernel function defined in (3.11)
blade thickness function

maximum blade thickness at a particular radius
trailer kernel function defined in (6.9)
lifting-line part of T defined in (6.12)

T - TO

x component of disturbance due to a unit singularity

tangential component of disturbance due to a unit singularity
redial component of disturbance due to a unit singularity
streamwise component of disturbance due to a unit singularity
normal component of disturbance due to & unit singularity

total disturbance velocity normel to blade

normal veloclty due to sources

normal velocity due to bound vortices

normal veloclty due to traillers

normal velocity due to lifting-line part of trailers To
normal velocity due to Tl
function defined in (A.L4)

y component of disturbance velocity due to a unit singularity
axial approsch flow to propeller

relative flow past a blade section, neglecting disturbance velocities

relative flow past a blade section, including lifting-line
disturbange velocities

2 component of disturbance velocity due to a unit singularity
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axisl coordinate of (x, y, z) system--positive downstream
coordinate through tip of first blade in (x, y, z) system
third coordinate of (x, y, z) system

angle of j.ncidence

advance angle--neglecting disturbance velocities

advance angle--including lifting-line disturbance velocities
strength of bound vortex distribution-dimensions of velocity

strength of treiling vortex sheet

_radial circulation distribution--iimensions of veloclty x length

® coordinate of tip of k'th blade

rressure difference between upper and lower surface of blade
dummy z coordinate

dummy y coordinate

angular coordina:i:e in (x, r, §) system

angular coordinates of leading and treliling edge
advance coefficient--peglecting disturbance velocities
hydrodynamic advance coefficient

-6

9' -8

dumny x coordinate

dummy £' coordinate

dummy r coordinate

fluid mass density

source strength per unit area-~ dimensions of velocity
durmy 6 coordinate

durmy ¢ coordinate
veloclty potential
propeller rotational speed--rsdiams per second

dummy p coordinate
iv



1. Introduction

A linearized theory for propellers can be developed as a loglcal

extension §f the theory of finite wings in incompressible flow. The
principal difference is that a point on a propeller blade describes a

' helicoida; path as 1t moves through the fluid, while a point on & wing
s5imply moves along a straight line. Although the general form of the
expressions relating sha_pe to ;bressure distribution is similar in both
cases, the propeller expre;;sions are naturally more complicated due to
the more invoived geometry of the motion.

We begin by stating the usual assumptions that the fluid is

- frictionless, incomi:ressible’, free of cavitation and infinite in extent.

' The propeller 1s considered to be' operating in an ;axially directed stream
whose magnitude is a function of radius only, and it is assumed that there
are no extraneous solid boundaries. The flow is therefore steady relative
to a coordinate system rotating with the I;ropeller.

The propeller is assumed to have K syxmnetricélly spaced iden-
tical blades. In the present work the existence of a propeller hub is
neglected entirely. The propeller bladés begin a‘l'; some radius Ty vhich
cox;responds to the radius of the hub in the actual propeller. Both the
inner and outer extremitiés of the blades are therefore regarded as free
ends when the 1lift is required to be zero., 'I'his assumption is obviously
not particularly realistic, and work is presently in progress to represent

the hub properly as a solid cylindrical boundery. However, since the
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inner part of the blade near the hub contributes only a small portion
of the total propeller thrust, the "hubless propeller" approximation
may be adequate.

In the linearized case we assume that the disturbance to the
flow caused by the propeller is small, which requires that the blades
be thin and that the camber and incidence of the blade sections relative
to the undistrubed flow .be small. As in linearized wing theory, the
effects of thickness and of camber and incidence can be considered sep-
arately. Both can be represented by singularities dilstributed on stream
surfaces formed by the undisturbed relative flow past the blades.

Blade thickness can be represented by a distribution of sources
and sinks whose strength is proportional to the slope of the thickness
form in the streamwise direction. Similarly, the discontinuity in pressure
across the 1lifting surface can be generated by a distribution of vor-
ticity whose axis is on the 1lifting surface and normel to the oncoming
flow. These are designated "bound vortices." The condition of contin-
uity of vorticity requires the presence of an additional distribution of
vorticity whose axis 1s oriented in the direction of the relative flow.
These vortices known as "trailers" are present not only on the blade
surface but extend to infinity in the wake behind each blade.

There are obviously a large number of possible types of problems
to which steady-state propeller theory may be applied. However, the
following three are of principal interest:

1) Determine the shape of the blade sections for a prescribed
radial and chordwise load distribution.

2) Determine the maximum camber and incidence of a given type
of section at each radius in such a way that a prescribed
radial load is achieved with the sections operating at their
ideal angle of attack.

3) Determine the load distribution for a given shape.



The first problem is the most straight forward. We assume that the blade
cutline and thickness distribution have heen determined from considerations
of strength and cavitation. With both the load andthickness specified,
the strengths of the sources, bound vortices and trailers are immediately
known. The velocity normal to the blades at each point induced by each
of these three singularity distributions may be determined by integrétion.
The slope of the section mean line, according to the linear theory, is
equal to the normal component of the disturbance velocity divided by the
magnitude of the undisturbed approach flow. Consequently, if the normal
component of the disturbance is known, the section shape can easil& be
determinedl by integrat;i.on.

An important consideration is that the shape of the section
mean lines reyuired for a particular load depends not on'ly on the load
but also on the thickness of the blades. This is not true in the case
of a planar lifting surface since the sources cannot induce a velocity
normal to the plane on which they are situated. How_ever , in the case
of a propeller, the sources can induce a velocity normal to the blade
on vhich they are situated as well as normal to the adjacent blades.

The second problem is somewhat more complicated sincethe chord-
wise Liad is initiall& unknown. However, as in the case of wing lifting
surface theory, the chordwise load can be assumed to be composed of a
finite number of modes whose form is determined from two-dimensional
theory. The normal velocity induced by each mode can be determined in
the same way as in the first problem. Since the total load at each
chordwise section is prescribed, the amplitudes of some of the chordwise
modes are known initially. The camber, inc.dence and amplitudes of the

remaining modes can then be obtained by collocation.



The third case, which is sometimes call the "inverse problem,"
can be solved by assuming that the unknown load distribution is composed
of a double summation of chordwise and radial modes. The normal velo-
city induced at a set of points by each mode can be determined as before
and the unknown amplitudes obtained by collocation. This type of problem
would arise if one wished to analyze the performance of a propeller
opémtiﬂg at other than design conditions.

In the following sections, detailed derivations are given for
the disturbance velocities due to the souz;;:e and vortex systems repre-
senting the propeller. Much of this material may be found 'in recent
piblications by & number of authors. In particular, it should be
mentioned that the results given here in section 4, 5, and 6 are in
complete agreement wiﬁh corresponding results gi.ven by Sparenberg { 1]
and by P:zn |2}, provided the proper conversion of norﬁenclatuzje is
made., Numerical tech.niqﬁes and results have not been included in this

report but may be found in references [3] - [T] .



2. Geometrical Considerations

We begin by defining a Cartesian (x, y, z) coordinate system
which is fixed on the propeller. As shown in Fig. 2.1, the x axis
is the axis of revolution with positive distances measured downstream.
The y axls is selected so as to pass through the tip of one blade, while
the z axis completes the right-handed system. It is also convenient to
define a cylindrical (x, r, 6) system where the x axis, as before, is the
axis of revolution. The radial coordinate is denoted by r, and the
angular coordinate (measured clockwise starting from the y axis) by 6.

The equations relating the two systems are:

2 2
Yy =T cos@ r =y +2¢2
(2.1)
z =r sin® 8 = tan"1(z/y)

In order to relate corresponding points on each of the K
blades, we define ék as the ¢ coordinate of the point at the tip of
the k'th blade. Assuming that the blades are symmetrically arranged,

these angles are:

b, = an(k - 1) k=1, 2...K (2.2)
K

which 1s illustréted in Fig. 2.2,

In order to conserve symﬁols, we will assume at the outset
that the propeller radius R is equal to unity. This is equivalent to
saying that all length dimensions (including those present in linear
velocities) have been divided by R.

The undisturbed flow past the blades is composed of a tan-

gential component wr due to the rotation of the propeller, and an
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axial component VA(r) due to the oncoming stream. Since there is no
radial component, the streamlines lie on cylindrical surfaces, r = con-

stant. The angle between the undisturbed relative flow and the yz plane

can be seen from Fig. 2.3 to be:

\'s
B(r) = ten™t (—ﬁ) = tan'l(z‘é_ﬁ) (2.3)
wr

where B is known as the advance angle and

A(r) = r tanp(r) ' (2.4)

is defined as the advance coefficient. The streamlines are therefore
helices whose pitch P(r) is equal to 2mXr).
The sine and cosine of the advance angle, which will appear

frequently in the follovwing sections, can be expressed in terms of r

and A
sina(r) = —-—ME-L—

2+ R(r)

(2.5)

r

VrE + ;f’(r)

as can easily be seen from (2.3).

cosp(r) =

We next assume that the propeller blades lie approximately on
the helicoidal surfaces swept out by the undisturbed flow past the

radial lines

8= 8 (2.6)
x=0

This does not impose any restriction on the blade outline, but



neglects the effect of blade rake.
The k'th blade and its wake is therefore located approximately
on the helicoidal surface

B (x, ¥, 8) =x = Nr)(8 - 8) = 0 (2.7)

It 1s also convenient to define an orthogonal curvilinear
coordinate system (s, n, r) on each of the H.k surfaces. The s coordinate
is formed by the intersection of an axial cylinder and the surface Hk’
and is therefore tangent to the streamlines of the undisturbed flow. 'I'he
r coordinate is radial, as before, and the n coordinaste is perpendicular
to r and s is directed in such & wey that it has a positive axial
component. This notation is illustrated in Fig. 2.1.

If the pitch of the helicoidal surface is independent of radius,
the r coordinate through eny point on Hk remeins on H'k' The n coordinate
is therefore normel to H. If the pitch is a function of radius, this
is not necessarily true so that n mey depart slightly from the true nor-
mal to thé helicoidal surface. However, it is assumed that variations in
pitch are sufficiently gradual for this discrepancy to be negligible.

As can be seen from Fig. 2.1, the expressions relating the

(s, n, r) and (x, r, §) coordinate systems ares

Nr) x +1%(0 - 8,)

r 4 Xz(r)

s = x sing + r(6 - ak) cosp =

(2.8)
xr - rXN6 - 8,)

Vr2 + /\2(1')

n =x cosp - r(e - 6k) sinf =

10




On any one of the K helicoidal surfaces, the relationship between x and
9 can be obtained by combining (2.7) and (2.8)

s =N+ ) (0 -8) (2.9)

We can now define the blade outline and the shape of the blade
sections in the (s, n, r) system. The s coordinates of the leading and
trailing edges are sL(r) and sT(r) respectively, while the angular

coordinates are designated aL(r) and eT(r).

Lr) = sT(r) - sL(r) (2.10)

The blade sections cen be decomposed (as in two-dimensional
wing theory) into a symmetrical thickness form t(s, r), a mean line
c(s, r) and an angle of incidence a(r). The maxinum thickness of a
section at a particwlar radius is denoted to(r) and the maximum camber

is co(r). This notation is shown in Fig. 2.k.
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3. Normal Velocitl Induced by Blade Thickness

According to linear theory, the thickness of the blades can be
generated by & distribution of sources and sinks located on the helicoidal
surfaces representing the blades. We consider first a point source of
unit strength located at a point with Cartesian coordinates (£, 1, ¢).

The velocity potential if this source is

8(x, ¥, z) = =L (3.1)
Y (x - §)%+ (y - W%+ (z - ¢)°

and the Cartesian components of veloeity at (x, y, z) are

ﬁ(x’y’z:E"ﬂ:C)=-gi= x -8
) nf(x - e+ (v - % (2 - c)2]3/2
(3.2)
y -1

;(x: Y, z, &, T ¢) =%'
i [ - 0P (v - 1P (2 - 0P P2

z -6
b [(x - 0% (v - P+ (2 - oPPR

w(x, v, z, |- AN C)=‘g%=

The bars on the symbols (u, v, v) denote velocities due to
& point source of unit strength. The total velocity at a point due to

a distribution of sources is identified by the same symbol but without
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& bar on top. It should be mentioned that the symbols (u, v, w)
will not be used exclusively for scurce velocities but will be used to
denote disturbance veloecity components in general. Since we are consid-
ering only sources in this section, there is no need for further
1dentification. However, additional symbols will have to be introduced
later to distinguish between disturbance velocities due to source and
vortex distributions.

The velocity components glven in (3.2) can be converted to

cylindricel coordinates using the equivalent of (2.1)

Y = r cos z = r sin®

(3.3)

It

p cosg ¢

p sineg

where (x, r, §) is the point where the velocity is to be evaluated and
(8, p, v) is the location of the source. The axial tengential and

radial components are

x - &

1n'l[(x - g)2+ o+ p2- 2rp c;s(qa - 9)]3/2

ﬁa(x)r} 9,§,P,<P) =

ﬁt(x,r,e,g,p,cp) = W cosf - V sing = =¢ sin(g - 6)
ll-v'r[(x - §)2+ 2+ - 2rp cos(cp-e)]3/2
ﬁr(x,r,e,g,p,cp) = ¥ sing + ¥ cosh = = -peos(y - @)

ln{(x - §)2 +r° 4 02 2rpcos(cp-e)]3/2

14




The velocity components given in (3.4) can be resolved into
components in the helicoidal coordinate system by means of (2.8)

), + rﬁt
Vr? +>\2(r)
i, - N(r)u,

Y2 . )\2(1‘)

Gs(x: r, 8, & P, 9) =

(3.5)

ﬁn(X, r, 9, & P, 9) =

In this application, we are only interested in the velocity
normel to the helicoidal surface. This cen be obtained by combining (3.%)
and (3.5)

9,(x, v, 8, €, p, ) = r(x - ) +XN(r)p sin(p - 8)

‘m\/ra +)\2(r)£(x - §)2+ 2+ 92- 2rp 005(<P"9)]3/2

(3.6)
For points on the helicoidal surfaces representing the blades,

x and £ are related to 6 and @ by (2.7). If we adopt the point of view
that the velocity is always to be computed at a poinmt (x, r, €) on the

first blade, while the position of the source is at some point

(2, p, @+ ék) on the k'th blade, there follows

x = \r)e

(3.7)
é ’ 4 =A(9)‘P

15




so tat (3.6) becomes

i(r % 5 @ ) - r(A(r)8 - 2(p)p) +A(r)e sin(o + 8- 0)
N2 NI V)0 - MoJo)Re 12 g2 2xpoos(yt,-0) P2

(3.8)
If A is independent of redius, the term (\(r)@ - M p)p) appearing both

in the mmerator and denominstor of (3.8) can be replaced by A(® -~ ¢).

In this case, the angles ¢ and @ in (3.8) sppear only in the combination
(p - 8), vhich 1s equivalent to saying that the velocity depends only on
the angle betveen the source and the point. 8Since this represents a
great simplification, it is worthwhile in the general case to imtroduce

the approximetion

A(x)8 - Mp)p ~ - Np)(op - 8) = = Np (3.9)
vhere, by definition
p=@ -8 (3.10)
The geometrical interpretation of this spproximation 1s that the
axial distance between the point at (x,r,6) and the singularity at (e,0,9)
is essumed to be the same as if the pitch of the helicoidal surface at p
were the same as at r. If the variation of Awith r is gradual, the error
in axial distance will be small when p is close %o r. Consequently, the
error introduced in determining the velocity induced by nearby source
elements would presumably be smell. For distant elements, on the other
band, a change in the axial component of the distance between two ele-
ments will not bave a large effect on the direction or magnitude of the

induced velocity.
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Of course, when )\ 1s constant, there is no approximatiin isvolved, "
Substituting (3.9) into (3.8) and summing over the K 'blades,
ve obtain the result . '

S(rp) - — B o 4 p sinly + 8)
(rsen) Vs Xe(r) ; [XQ(P)HF-# 2+ p2 - 2rp cos(y + 6k)]3/2
| (3.11)
vhere S(r,p,u) represents the velocity normel to the helicoidal surface at
a point (r, 6) on the first blade induced by K unit point sources at a
radius p. The angular coordinates of the sources are (@ + 8, - 6)
measured from the y axis, or (u + Gk) measured from the point (», 0).

It can be seen from (3.11) that S(r,p,u) 18 an odd function of y,

S(r,p,u) = -B(r,p,u) (3.12)
This is obviously true when k - 1. VWhen k > 1, the contribution of the
k'th blade to S is odd provided that we change the sign of 6k as well
as u. Since the sign change 1s equivalent to summing the blades in
the reverse order, the total result is unaffected, hence we conclude that
S 18 odd.

We next need to determine the strength of the source distribution.

According to linear theory, the source strength per unit area, o, is

Bl

glven by

o(p, ) = V_(p) & (o, 9) (3.13)

17
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where V_ 1s the magaitude of the undisturbed relative flov and g{-

is the derivative of the thickness form in the streamvise direction.
It 1s evident from Fig. 2.3 that

V(o) v, (p) Vo34 »2(p)

vV (p) = -
o sinB(p) XA(p) (3.14)
so that
' 3 2, .3t
o(?.0) = Vi (PINS™ + X(p) 55{r,9) (3.15)

M (p)

The total normal velocity at any point on the first blade can now be
obtained by combining (3.11) and (3.15) and integrating over the sur-

face of the first blade

1.0 s&(p)
o) ) - | ’ﬁ o(p,9) 5(r, o, u) as & (3-16)
p=r, s=sL(p)

The chordwise integration in (3.16) can be expressed entirely in terms

of the variable y by introducing

as = Vo= + A2(p) du

¢ = u+9

(3.17)

18
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1.0 8.6
“x(;s) (r,8) = S o(p,u+8) B(r,p,u) Jpa+)\2(o)du dp (3.18)
p= h M’-QL'O -

While the integration in (3.18) camnot be carried out explicitly inm
most cases, various numerical schemes are available which will yleld
results of sufficient accuracy. It is important to note that the

integral in this cese is not singular since S(r,p,u) bas a finite
limit when r-p and u=O.
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4, Distribution of Bound Vortices and Trailers

The pressure loading on the blades can be represented by a
distribution of redially oriented bound vortices lying on the helicoidal
surfaces representing the blades. We again introduce the dummy cylindrical
coordinates (£,p,p) to denote the location of an element of the vortex
sheet, while (x,r, @) are the coordinates of a point at which the velocity
is to be determined. The strength of the bound vortex sheet per unit
of length along the helix at.rad.ius » 18 y( P,p). The pressure difference
(8)

across the surface according to linear theory is

Ap (0,9) =5 V (p) v(p,%) (k.1)

where P 1is the f£luid density. Substituting (3.14) for the approach

velocity V_ in (4.1) there follows

M,(0) 6% + (o) vis,9)

A (p) (4.2)

Arlp,9) =

The total circulation around a blade at radius p is

ST(O) OT(p)
r(p) = X v(p,P)ds = S v(p,9) Vo2 + X(p)ag (k.3)
sL(P) QL(D)

where 6, and @, are the angular coordinates of the leading and

trailing edges, respectively, and the element of arc length ds has been

20
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s

expressed in terms of dp using (2.9). N _
In order to preserve contimilty of vorticity, thers must also
be a system of trailing vortices whose axis is in the s direction. The
requirement of continuity of vorticity on a helicoidal surface can be
obtained very easily by keeping track of the total vorticity entering &
differential element of the surface, as shown in Fig. 4.l1. The stremgth

of the vortex lines entering the four sides of the element is

bound circulation entering bottom = ¥(p,p) V p2 + )\2(p)d:p

bound circulation entering top = -v(p+dp,p) \/ (p+ap )2+ )\2(p+dp)d|p
trailers entering left = v (p,p) dp
(4.%)
trailers entering right = -Ys(p ;o + d9) dp
Setting the sum equal to zero gives the result

3 ’
Bl 3%- I:Y(P:(P)\/ 02 + 22(p) ] (%.5)

%

vhere v s denotes the strength of the trailer.

Equation (4.4) holds only for points in the interior of the
blades. At the leading and trailing edges, a trailer 1s generated, so
to speak, vhenever a bound vortex tries to run off the edge. This can
be seen by teking as the control area an infinitesimal triangular element
as shown in Fig. 4.2. In order for the blade edge to form the hypotemuse

of the triangular element, the relationship between dp and 4p must bdbe

3
X = «SZL dp at the leading edge.

. (%.6)
» ..’3;1_'- ap at the trailing edge

21



FIG.4.1 ELEMENT OF VORTEX SHEET
IN INTERIOR OF BLADE




At the leading edge, the bound circulation entering the bottom as before

is
v(e,q 0/ 02 + )(p) ao (x.7)

vhile in this case, there is none leaving the top. This must be balanced

by the total strength of the trailers entering the right side, which to a
first order is

R ACH PR (4.8)

Combining this with (4.6) and (4.T7) glves the result

d
Y(rs8) = v(e,8) 0% + X(p) 5-:1'— (4.9)

A similar analysis of circulation entering a jbriangular element at the
trailing edge shows that Yy mast also be discontinuous at that point.
I Ys(p,e,;) is the strength of the trailer just inside the trailing
edge, and ys(p,e\;) 18 the strength just outside the trailing edge, the

following expressions hold to a first order

bound circulation entering bottom = y(p, ST) V 92 + )\2(9) &

bound circulation leaving top = O

- (k.10)
trailers entering left = YS(D;ET) dp

trailers entering right = -ys(p,e;) dp

Setting the total equal to zero and imtroducing (4.6), there follows
9
Y, (0,87) = v, (p,87) = ~¥(p,65) V o+ 22(p) 5;3- (b.11)

23




FIG. 4.2
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ELEMENT OF VORTEX SHEET
AT TRAILING EDGE



The total strength of the trailers st any point is obtained dy
integrating (4.5) and adding the contributions of the edges from
@.9) ana (4.11)

| 9
36,
vo(o.®) = v,/ R - § & v/ Aem]n .
e (p)

foreLf cp<qr
()

pd
Yg(ps9) = v(p, 8. 6%+ N2 (p) 3 S 2 | vle,0 0% XE(P]
(e (b

~ d
~Y(p,85) /o%+ 2(p) -;%

forqrf @

Noting tbat the limits of integration above are functions of p, it is
evident that (4.13) is equivalent to

&n(P)
Yg(P,®) = - 5%- S v(p,%) \/92 + Ry ap- -2l )
8. () %

for Gmftp
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5. Normal Velocity Induced by Bound Vortices
We determine next the velocity induced at a point (x, r, 6)

by a bound vortex of unit strength located at a point (2, p, ¢). Since

there 1s no such thing as a "point vortex,” what we will determine is

the velocity induced per unit length of the vortex. This can be determined

from the law of Biot-Savart, which in this case can be written:

-y e d
rxD

lmlnlg

(G-: ;J ;’) =

(5.1)

vhere T is & unit vector in the radfal direction, D 1s a vector from
the vortex (£, p, @) to the point (x, r, 8), and (u, v, ) are the
Cartesian components of velocity. The components of D can be seen

from Fig. 5.1 to be:

D =[(x - E), r cos§ - p cosp, r sing - p sin (p] (5.2)

vhile the components of a unit vector in the radial direction are

T = E), cos®, sincp] (5.3)

Substituting (5.2) and (5.3) in (5.1) yields the following expression

for the velocity components

- r sin(p - 8)
lm[(x - §)2 P 92 - 2rpcos(ep - eﬂ 3/2

u =




N

FIG. 51 NOTATION FOR VELOCITY AT (x,,0)

INDUCED BY A BOUND VORTEX AT

(X )




7 - (x - g) sinp

b [(x - g)2 +22 492 2rpcos(yp - 0)]3/2

(5.4)
- -(x - £) cosp

by [(x - g)2 + 124 % 2rpcos(p - 0)] 3/

Proceeding in the same way as with the source expressions, we next
convert to :ylindrical coordinates using (3.3)

= sin(p - o)
l&nﬁx - g)a +22 4 0% - 2rpcos(p - 8) 3/2

U, =u=
(5.5)

= (x - &) cos(p - 8)
lm[(:o: - §)2+ 2+ pa- 2rpcos(yp - B)] 3/2

i‘,':v'rcose-;BinO-

(x - g) sin(p - 8)
hn[(x - g)2+ 2+ p2-2rpcos(¢ - O)J 3/

ﬁr-v';sin9+§cose=

The component normal to the helicoidal surface is obtained

by substituting (5.5) into (3.5)

-rzsmgg = 8) + Mr) (x - £) cos(p - 6)
w0802 [(x - €0R 2%4 o2 2rvcon(y - )2

ﬁn(x:r: 9:§:9,(P) =
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Equation (5.6) expresses the velocity induced at (x, r, §) by a wmit
bound vortex at (£, p, 9). If ve again consider the specigl case of
the velocity induced at (r, §) on the first blade by & wnit bownd vortex

at (p, ¢ + 8, ) on the k'th blade, (5.6) becomes (5.7)
T

o stn(g-0+8,) - A(r)[No) - Alr)e)con(-08,)
bn 1'2+ /\2(1‘) [(/\(D)'P -/\(r)ﬂ)a*' r2+ pa- 2rpcos(¢-o+6kﬂ 3/i

where x and £ have been eliminated using (3.7).

un(r: 8, P:q’:k) =

Introducing the approximation

N(x)e - A(pdpm - A(p) (® - 6) = - Aok (5.8)

as before and suming over the X blades, we obtain the result

L & stn(u + 8,) - AMrA(P)ucos(u + &)

lm‘jr2+ Aa(r) k=1 [)\z(p)p,z + 124 p2 - 2rpcos(y + bk)]3/2 (55

B(r: p;l-'-) =

In equation (5.9), B(r, p, p) represents the normal velocity induced
by K unit bound vortices and is amalogous to the expression for the
velocity induced by the unit sources given in (3.11). It is also
evident that B is an cdd function of p provided that the blades are
symmetrically arranged.

The total velocity at (r, 6) induced by a distribution of
bound vortices can now be written as an integral over the surface of the
first blade.
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1.0 sT(p)
‘“Slb)(r’ e) = § & Y(“:‘P) B(r,p,u) a8 dp
P=rg _B'sL(p)
(3.10)

1.0 -9

¥o,u + 8) Blz,p,u)Vo® + 2(p) & ap

pury =0 -8

In this case the integral is singular at the point (p = r, = 0)
so that the Cauchy principal value must be taken.
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6. Normal Velocity Induced by Trailers
We begin by determining the velocity induced at (x, r, §) by

a trailer of unit strength originating at a point (£, p, 9) and extending
to infinity downstream. In order to distinguish a general point on
the trailer from its starting point, the former is identified by the
dummy coordinates (g', p', <p'). Since the radius of the trailer is
assumed to be constant, the prime on p is unnecessary and will therefore
be omitted.

The velocity ean be expressed according to Bilot-Savart's law

and an integral along the vortex

(3, ¥, #) = El;j S_I:ITD ds’ ' (6.1)

vhere s 1s a unit vector tangent to the trailer and ds' is &
differential element of arc length along the trailer. Referring to
Fig. 6.1, the vector from a general point (£} p; @') on the trailer
to the point (x, r, 0) can be seen to be

p- [(x -¢'), r cosp - pcosg', r sing - psimp'] (6.2)

vhich 18 the same as (5.2) except for the primes on £' and ¢'.
A unit vector tangent to a helix with an advance coefficient A(p) is

rp— [}«n, - o stnp, cow:[ (6.3)
o2+ A%(p)




FIG. 6.1 NOTATION FOR VELOCITY AT

(x,r,$) INDUCED BY AN ELEMENT
OF A TRAILER AT (§,a¢). THE

TRAILER ORIGINATES AT (£ ,0,4).




The three velocity components can be obtained by substituting (6.2)
and (6.3) in (6.1)

S (p2 - preos{p’ - 8) do'

ﬁ(x,r: e,g,p,cp) = ]lﬁ
[(x - ;')2 + r2 + p2 - 2rpcos¢']3/2

@'
(6.4)

v(x,r,8,8,0,9) = E]'.TT S [(x - £') peosy' - Ap)r sing +A(P )P Big'lg'

P'=p [(x -+ 2%+ o8 -2 coscp'] 3/2

I-Xp)r cos ')(P)P cos®' + Lx -_s')p sing! !ggl
PP [(x e e r® 4 0% -2 cos¢,]3/2

‘.’(x:r) 9,§,D,¢) = ‘E%

In these equations the variable of integration has been converted from s'
to ¢' using the relation

ds' = \lpa + N(p) ap' (6.5)

The velocity components in (6.4) can be resolved into axial tangential

and radial components as done before for the sources and bound vortices

1 [ - br cos(er - a)]dm'
= [(x - g')2 + 1% 402 - 2rp cosq] 3/2
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U =W cosg -~V sing = ﬁ'. S [MP) (r - poos(p'~ 8))+ (x-2')p ‘u‘!-,‘ﬂ!!.

%
?'=p [(x - 8% 52 92 2rpcos v'] 3/2

(6.6)

'l.ir = Y-l sing + 17' cos@ = E]-.T? X' [)\(P)P Sin(¢' - e)‘l' (x - g' )p cosk'-e) ﬂ!'
¢'=¢ [(x - §|)2+ r2 + 92 - 2rp COB(P'] 3/2

The component normel to the helicoidal surface at (r, 6) is obtained by
combining (6.6) and (3.5)

8

- 1
un(x,r, 9,%,P,9) =

b 72 () P'=p

rp®- 1%p cos(p'=8)- Ax) A(p){r-peos(p'-8)} - (x-£')oM(r) sin(p'-~ 0) ap'
[(x - g')2 + 12 4 92 - 2rp coscp':l 3/2

(6.7)

By agein introducing the approximation

x -8 =\z)e = Mplo' = - Np)e'- 8) = = Np)v
which is equivalent to (3.9) and (5.8) and replacing @'- @ by v + S,
(6.7) vecomes

an(rypal-l:k) =

= ]
V™ + N (x) v
L@ )0 - %) cos(v + 8,) + NrIN(e)ow sta(v + &) - =(NNe)+%)] av

[)\2(9)1:2 +1° + 02 - 2rp cos(v + 61:)]3/2

(6.8)
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Mhe velocity induced by K unit treilers is obtained by sumding (MT
‘over the blades "

K C ’ :
(r,pm) = z‘ih(rxpalhk) | a (609)

k=l

The total velocity is obtained by introducing the stmcth of
the treilers given in (4.5), (4.9) and (4.11) and integrating over the

blade surface.,

1.0 8.(p)-8 |
un(t)(r,e) - - f § 5%— [Y(p, b+ 0)/o% + Xa(p)]T(r,p.u)du ap +
Ty eL(p)-a

(6.10)

1.0

2. ( 3a,(r)
§ [0, 28,0108 e = Y(s400) K 8506) - 9)
T,
h

02 + (o) ap

The first integral in (6.10) represents the contribution of the
trailers originating from points in the interior of the blades, while the
second integral takes into account the trailers starting at the leading
end treiling edges. The Cauchy principal value of the integrals mst
be taken whenever the range of integration includes the point (r,6)
vhere the velocity is to be determined.
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While the expressions for the velocity induced by the sources and bowpd
vortices are not particularly simple, (6.10) is a much more &ifficuld
expression to evaluate due to the fact that the function ¥(r,p,u) involves
an integration over a semi-infinite interval. However, this difficulty

can be eliminated by considering T as the sum of the two functions

T = T +T (6.11)

obtained by splitting up the range of integration in (6.8) in such a

way that
T (r,0) = (r,p,0) = L Sr(») av (6.12)
° Ve + )\2(1-) o
and
i

-1

Tl(r.vp.vll) = £(v) av (6.13)
‘m;ra + 22(x) o

vhere £(v) 18 the integrand of (6.8).

CoD T

It is evident that f(v) is an even function if one applies the
% same argument used in sections 3 and 5. Consequently,

e |
grdz? + No(r) =

i8 one-half of the velocity induced by a set of X wmit helicoidal vortices

To(r.vp) =

£(v) av (6.14)

extending from (-»,»), Since the velocity field of such & configurstion

is two dimensional ( it is independent of s in the (s,n,r) coordinate
system) an alternmate expression for T, can be obtained from a two
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dimensional potential. A derivation of this Mn was given w
Lerbs(?) vho found the result to be en infinite seles of modified
Beesel runctiona.. While this, in itself, would offer no partioular
computational advantage over the integrsl r:presentatica givem in (6.13),
it i3 fortunate that highly accurate asymptotic approximations to the
sums of Bessel functions are available. The most accurate approximmtions
were developed by Wrench(lo) , and it has been found that his formulas are
far more efficient than the numerical integration required to evaluate
(6.13). The exact and approximate expressions for T,, taken from Lerbs'
and Wrench's work with some modification in nomenclature, appear in
Appendix A.

We consider finally the second part of (6.10), namely T,

Since f(v) is even, T, 1s an odd function of u

Tl(r,p,-u) = - Tl(r:p:ﬂ) . (6.15)

This fact is not only useful in the numerical evaluation of '1‘ but
also permits us to draw some important conclusions regarding incidence

and camber which will be considered in the next section.

’Lerbs' results are expressed in terms of "induction factors"
wvhich differ from '1'0 by a constant fasctor.
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T. Total Disturbence Yelocity Normal to the Blades
The total disturbance velocity normsl to the first blade at

a yoint (r,0) is obtained by sumuing the effects of thickness (3.1T),
bound vortices (5.10) and trailers (6.10)

u (r,8) = ul(ls)(r,e) + ux(lb)(r,e) + K(!t)(r,a) (7.1)
We can further subdivide u!(:' )into parts, u!(lto) and v{"l), where the
former represents the contribution of To and the latter the contribution
of T, @s defined in (6.12) and (6.13). An expression for uﬁ%) can be
obtained from (6.10) be replacing T(r,p,u) by 'l‘o(r,p) and bringing T

outside the . integration (since it is independent of )

1.0 qr(p)-e |
u,(,to)(r) = S T (r.0) ) - ga; [Y(P;‘P‘"e) o2 )\2(9)]du +
p=ry u=6,(p)-6
(7.2)
a8 ( d —
[Y(%(p)p) —%;2-)- - (ag(p) ») -Er;?l] Ve + )?(p)} ap
This can be simplified using (4.13) and (4.1%) %o
1.0 ,
(%)) - - X () g (x,0) a0 (7.3)
% % | °
p‘-‘rh

vhere I'(p), s defined in (k.3), is the total circulation around each
blade at a radius p. This is well-known as the "11fting-line" equation
vhich represents the velocity induced by the trailers shed from K

concentrated radial boumnd vortices.
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The 1ifting-line approximstion to %(r) is obtained by deter-
Rining u£t°) from (7.3) and approximating u\*)(r,8) from two-dimensional
theory based on the sections at the particular radius in question. The
latter approximation is frequently referred to as "strip theory." The
velocity components u;:(18) and ux(ltl) are assumed to be zero in lifting-line
theory. However, these assumptions are velid only when the aspect ratio
of the blades is large, which 1s never true in the case of & marine pro-
peller. Consequently, the lifting-line velocity ul(lt°)(r) is of limited
usefulness in itself and should therefore be considered simply as one
of the ingredients in the total velocity givem in (7.1).

We see from (T.3) that ul(lto)(r) represents a disturbance
velocity which is constant over the chord. The remaining terms in (T.1)
are generally functions of both r and 6 and depend on the blade outline
and the load and thickmess distribution.

We now consider the special case where the blade outline,
chordwise load distribution and chordwise thickness distribution is
symuetrical about the lines 8 = 6k through the tips of the blades. In
this case, it can be shown that ux(ls)(r,e) is an even function of 6, while
ux(lb)(r,e) and ur(ltl)(r,e) are odd functions of 6.

Consider first the velocity due to the sources, ur(ls)(r,e).

It was shown in section 3 that the function S(r,p,u) is an odd function

of u. Recalling that y = ¢ - 9, we can write

S(r,p,p - 8) = -8(r,p, - + 8) (T.4)

Since the blade outline is symmetrical, we also knov that

g.(p) = - ap(p) (7.5)
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vhile the fact that the thickness form is symmetrical about the mid-chord
requires that the source strength be an odd function of ¢

o(p,?) = - a(p=p) (7.6)
The total velocity induced at a point (r,6) by the sources

according to (3.12) is

1.0 tn(e)
ux(ls)(r,e) = f Vv 92 + )\2(9) f o(p,?P) S(ryp,p-8) dp dp (7.T)
Ty g (p)

vhile the velocity induced at the corresponding point -6 is

1.0 8n(e)
uﬁ"’(r,-e)=j JZ R [ oo seie) apes  (1.8)
N g (p)

We next introduce the symmetry properties expressed in (T7.4), (7.5)
and (7.6) in (7.8) to obtain

1.0 -4 ()
u,(,s)(r,-e) = j Joe + () f o(p,~) 8(r,p,~¢-8) a9 dp (T.9)
rh "QI.(P)

Substituting <p for ¢ as the variable of integration in (7.9) and

changing the sign of the limits of integration accordingly, we obtain

1.0 8 (r)
méf)(r,-e) = - j /92 + 22(p) f o(p,?) S(r,p,9-8) dp de (7.10)
*n ap(e)




Since this is the negative of (7.7) except with the upper and lower limits
of integration reversed, we conclude finelly
w{®)(z,0) = w{*)(z,-0) (r12)

The velocities (b)(r,e and u(tl) r,§) can be shown to be
Y% n

odd functions of 6 in exmctly the same way. In this case B(r,p,u)

and T(r,p,u) are odd functions of p as was S(r,p,u) while the strength

I

i
e
¥

of the bound vortices and trallers 1s an even function of ¢. This

e

introduces an additionsl minus sign in going from the equivalent of

(7.8) and (7.9). Consequently, we conclude that

5 ey SN A

W®)z,6) - - Pz, -0)
(1.12)

uitl)(r,e) = = u!(Itl)(r:"e)

An important conclusion which can be drawn from (7.12) is that a propeller

of zero thickness with symmetrical blades and load distribution will require

SIS AR N AR e e e

no edditional incidence beyond that given by lifting-line theory, i.e.,
the contribution of ué%)(r). An additionsl incidence correction (aside

from corrections due to viscosity) can appear only as a result of blade

thickness., The 11fting surface correction therefore consists entirely

of camber in this case, Conversely, the thickness distribution cannot

=AY o TR

induce a net camber since it is an even function of 6.
These conclusions obviously do not hold if the assumed symmetry

is not present.
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8. Non-Linear Refinements

According to linear theory, the singularities representing
pressure loading and thickness are distributed on stream surfaces
formed by the undisturbed epproach flow., Some improvement in accuracy
would presumebly be achieved if the sources and vortices on the blades
were located on the mean lines of the sections at each radius and if
the trailers were made to follow the actual streamlines extending down-~
stream from the trailing edges of the blades. However, in this case
the position of the singularities would depend on the disturbance velocity
field which, in turn, would depend on the position of the singularities.

While a complete solution of this non-linear problem is
presently considered to be both impractical and unnecessary, there is one
refinement which may be introduced with very little additional complication.
This is customerily referred to as the theory of "moderately loaded"
propellers, as contrasted to the strictly linearized case which is
termed "lightly loaded."

In the moderately loaded case, it is still assumed that the
distortion of the oncoming flow due to the radial component of the
disturbance velocity is negligible. Consequently, the streamlines remain
on cylindrical surfaces as before. However, in this case, the dlstortion
of the streamlines due to the axial and tangential disturbance velocities
is teken into account in an approximate way. It is assumed that the
resultant streamlines lie on helicoidael surfaces whose pitch includes
the 1lifting line disturbance velocities obtained from (7.3). The
modified surface can be expressed in terms of a hydrodynamic pitch angle

Bi, vhich can be seen from Figure 8.1 to be:

4o

o
Y




uﬁtO)(r) + VA(r) 6.1)

e e - o + u,(;t°)(r)

It should be noted that the tangential disturbance veloecity
is negative in Figure 8.1, which is evident if one comperes Figure 8.1
with the velocity diagram shown in Figure 2.3. The plus sign in the

denominator of 8.1 is therefore consistent with this sign convention.
A hydrodynamic advance coefficient >\i can be defined as

)i(r) = r tang, (r) (8.2)

vhich is analogous to the definition of X in (2.4). Pinally the

»
resultant approach velocity V can be seen from Figure 8.1 to bet

(o)
e - Yy (r)v,  (r) _ w + (t°)(r) (8.3)
sinai(r) cosBi(r)

The 1ifting line disturbence velocities for a prescribed radial
load distribution mey be obtained from (T.3) as before. The oaly
dlfference 1s that A is replaced by )\1 in the expression for T . As s
result, T  becomes a function of uito) through >\1 8o that (T.3) represents
a non-linear integral equation rather than simply an integral. However,

a solution can readily be obtained by an iterative scheme vhere the j'th
spproximstion to u_ 1is obtained by using the value 7} obtained in the

(3 - 1)st iteration in determining T . The first approximtion is simply
the linear ome, 1i.e., Xi = )\.

b3



FIG. 8.1

VELOCITY DIAGRAM AT A
LIFTING LINE
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Once >‘1 is determined, the evalustion of the remeining
velocity components uﬁs) s (b) and \&(ltl) can be accomplished in the
same way as in the completely linearized case. Consequently, the only
additional complication introduced in the theory of moderately loaded
propellers i1s that an iterative solution is required to solve the nfting

line equation.
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APPENDIX

S'ummry of Expressions for Indu:ed Velocities at a Liﬁ:ug Line

The axial and tengential velocity induced by K helicoidal
vortex lines of unit strength is given in (6.6). The 1lifting-line case
is obtained by setting 8 = ¢ = x = O and by replacing ¢' by v + 6k

and €' by A(p)v

{02 - pr cos(v + &)} dv
[)2(9 )v2 +r° o+ p2 - 2rpcos(v + bk)]3/2

ﬁa(r,p) = ]i];-;

O &8

(A-1)

8

(Ne)(r - pros(v + &) - Mplup sta(v + &)} &
[)\2(9)1;2 + r2 + p2 - 2rp COS(V + 6}{)] 3/2

By (x.0) = &

o]

Equivalent expressions are given by Lerbs(9) in terms of
modified Bessel functions. With some slight changes in nomenclature

and sign conventions, these results are

forr <p
2KoF
- _ X i §
a0 D ( X(p)
(e - 2
uglr,p) = A(p)
where

r - i o L ““'§ Kmé;’(‘-‘%l n2)



and where I and K are the modified Bessel functions of the first

R ——

and second kind respectively, and the prime denotes differentiation

with respect to the arguments.

Forr>p
(o) - 2002
u‘ T,p) = -2-“—}\?(‘)—)
- (r.p) = X- -
ut( ) e [l + —m] (A.3)
- ~nkr I <]
LI L« |

n=1

The approximations to 1"l and Zl"2 developed by H.rench(lo) are

2 1/4 2 2 ]
a 1+ 9 1 . 1 9q° + 2 3q - 2 1 |
L= 2Kq, ( 1+q° ) ‘U‘l-l 2kx I:(1+q§)372 ' (1 + q§)3/2. 1o (2 U'I-l)
2 - 5
2,1/4 +2 2 '

& . l+q° | 9q° -B—m' 2 1 1 + L)
2 Xq, ‘1 + < U-1 2k [(1 + %5)3/2 ! (1+4q7) i o8 11-1)l

wx'wre q, = P/ X (p) q =/ X\(p) (A.M)

2
U i%(hn -1) m[ﬁna-ﬁwﬁ]}‘
éKJl*qoz-l)
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The quantities ﬁ.(r,p) and \'xt(r,p) can be converted to

"induction factors" as follows:

1.,(1'19) = = bn(r-p) ﬁa(r:E) (A.5)

5
i

| ,v‘
3
£

1t(1‘;9) = IHT(I‘-D) Gt(rip)

When defined in this way, the induction factors are always positive for
& right-handed helix. The minus sign in the expression for i a'(::',p) is
not present in Equation 6 of Reference (9) vhere induction factors are
first defined, but it 1s incorporated in later expressions in the paper.
The reason for defining an induction factor is to obtain a
quantity vhich approaches & finite limit as r—~p. These limits, as

¥ derived by Lerbs and others, are

R R

14(,0) = cosB(s)
(A.6)

bats Saacty

1,(r,p) = sinB(p)

Finally, the quantity '!o(r,p) , which represents the velocity
normal to the helicoildal surface at a point r on the lifting line can
be expressed in terms of induction factors using (3.5) and (A.S)

g
@
¥
i
4
E

mi,(10) + No) yp)  mig(mp) + Nx) 1(r0)

T (r,p) = (A.7T)
° 2 + X(r) wno < r)=2 + 28(x)
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